

## **Energy-Efficient Housing**





- Introduction to Energy Efficient Housing
- Climate analysis of Rajkot & its impact on design of buildings
- Key Design Strategies for Energy Efficient Housing
- Conclusions

## Survey of electricity use and designs of flats – NCR & Chennai





#### **Conclusions - Survey**





#### Design Guidelines for Energy-Efficient Residential Buildings – 15 key Recommendations





### **Energy-Efficient Housing ?**



- Does not heat up abnormally during long summer season.
  - The requirement for use of coolers and ACs is minimized.
- Good ventilation to utilize cool breeze during evening, night and mornings.
- Adequate day lighting (kitchen, corridors, rooms,..); minimizes the need to switch-on artificial light during day.
- The use of electricity/fuel for heating water is minimized. Utilizes solar energy for meeting part of electricity/ water heating requirements.
- Energy-efficient lighting, equipments, appliances,...
- Low embodied energy in construction minimizing the use of energy intensive materials - steel, cement, glass,....
- Affordable
  - No/low additional construction cost.
  - Low electricity bill for occupants.
  - Easy and low-cost maintenance.

# Approach to Energy Efficient Building Design





#### Climate





#### **Rajkot - Ambient Temperatures**

Avg. Max. Temperature > 35 C  $\rightarrow$  reducing heat gains from building envelope



#### **Rajkot- Solar Radiation**



#### **Rajkot - Relative Humidity**



Oct to May  $\rightarrow$  Dry Climate  $\rightarrow$  Evaporative cooling possible June to August  $\rightarrow$  Warm & Humid  $\rightarrow$  Air Conditioning

#### **Rajkot - Sun Exposure In Different Directions**





- Reducing heat gains from roof insulation, shading, reflection,..
- Minimizing exposed surfaces on east & west; fixed shades not effective
- Windows on north & south can be protected to some extent by fixed shades

1. Reducing Solar Heat Gains Through Proper Orientation & Massing



Reduction in solar exposure:

- 1. By orienting the buildings i.e. larger façade on North and South direction.
- 2. Double Loaded Corridors, to reduce exposed wall area.





Source: Happinest, Mahindra, Chennai

#### 2. Reducing Heat Flow Through Roof







- In case of uninsulated concrete roof slab, the inside roof surface temperature in summer > 40 °C.
- Proper treatment of roof can help in reducing room temperatures by 4-5 °C.

#### **Reducing Heat Flow Through Roof**





#### **Reducing Heat Flow Through Roof**











Source: TARU & BEEP

Indo-Swiss Building Energy Efficiency Project

#### **3. Reducing Heat Flow Through Walls**





#### **Reducing Heat Flow Through Walls**







Source: Happinest, Mahindra, Chennai

Indo-Swiss Building Energy Efficiency Project

## Use Light Colours/ Lime White Wash on External Walls







#### 4. Cross Ventilation at Flat & Room Level





#### **Cross Ventilation**





In a room of 120 sq ft, having two openings of 4x3 ft (fully openable)

- 10 ACH at very low velocities
- 20-30 ACH at higher velocity.

Openable area of openings on external walls of a flat ~ 20-25% of the flat area.

Provision of ventilators above doors.

### **Single-Sided Ventilation**





Indo-Swiss Building Energy Efficiency Project

#### **Natural Ventilation**





The window is designed as a system- one that brings in daylight, has a shading fixture, can be opened to bring in cool air and can also accommodate an AC if required.

> Source: Happinest, Mahindra, Chennai

#### **Design kitchen for good ventilation**





#### Poor ventilation

#### **Good ventilation**

### Analysis of wind flow for large projects





#### 5. Daylighting & Ventilation of Corridors





#### 6. Shading of Windows



Source: Adlakha Associates; Kesar City, Ahmedabad

#### Indo-Swiss Building Energy Efficiency Project





#### **Shading of windows**



## MS frames in balcony for possible installation of chiks and blinds.





Source: Happinest, Mahindra, Chennai



#### **External Movable Shading of Balcony**





Indo-Swiss Building Energy Efficiency Project

#### 7. Renewable Energy Integration – Low Rise Residential Buildings can be Net Zero Energy Buildings



- Utilise rooftops for the generation of hot water and/or electricity using solar energy
- For energy-efficient residential buildings (overall EPI < 30 kWh/ m<sup>2</sup>/year) of up to 4 storey, it is possible to generate enough electricity over a year through rooftop solar PV to meet all electricity requirements.



Project: Topland Residency, Rajkot



#### 8. Embodied Energy (MJ/m<sup>3</sup>) – Walling **Materials** EFFICIENCY PROJE 6000 5000 AAC blocks 4000 **Flyash bricks** Perforated and hollow clay fired bricks are better options 3000 2000 1000 0 Solid fired clay Hollow fired-AAC Block Solid Cement FaL-G Brick Monolithic Compressed Concrete Wall stabilized clav bricks (FCBTK) clay blocks **Concrete Block** Block

Indo-Swiss Building Energy Efficiency Project

31

#### **Embodied Energy – Complete House**



Load bearing construction Load bearing structure of up to 4 storey using perforated clay bricks/ flyash bricks



plaster, further savings in cost.

Savings in material consumption Roof slab of precast RC planks and joist system

No shuttering

Minimum transportation and fuel cost

Low maintenance and high life cycle Steel consumption <1 kg/ ft<sup>2</sup> (conventional 3-4 kg/ ft<sup>2</sup>)

cost or transportation.

Cement consumption <0.25 bags/ ft<sup>2</sup> (conventional 0.45 kg/ ft<sup>2</sup>)







Source: Adlakha Associates

#### Not a good example





#### **Conclusion: Appropriate design interventions** can lead to energy efficient housing



- Houses that are thermally comfortable and use small amount of energy for operation.
- A significant part of this energy is produced by renewable energy systems and it might be possible to approach net-zero energy housing.
- The embodied energy of the houses can be reduced by upto 50% and the use of highly energy intensive materials like cement, steel, glass reduced.





## **THANK YOU !**

#### www.beepindia.org

Indo-Swiss Building Energy Efficiency Project