

## **Energy Efficiency in District Coiling System**

### CONTENTS



- Introduction to district cooling system
  - Applicability, benefits
  - Heat flow diagram, energy split up
- Energy efficient practices in district cooling systems
  - Central chilled water plant
  - Building side systems
- Advanced Technologies
  - Radiant Cooling Systems
  - Thermal Energy Storage
- Summary An Overall view

## What is District Cooling ??



• Chilled water is generated at a single point to meet the requirements of entire site



## **Introduction to District Cooling**



## **Applicability**

- Higher building density and high cooling demand
  - Business districts
  - Universities
- Diversity of cooling loads in different buildings <u>Benefits</u>
- Reduction in system cooling capacity compared to aggregate capacities of buildings
- Operating all equipment near to their optimum conditions (Upon reaching to critical mass of cooling demand)

## Heat flow diagram





## **Energy split up - Typical**









## Energy Efficiency practices -Centralized chiller plant





## Chiller efficiency - C O P





Coefficient of performance or COP

Cooling provided in kW

**Compressor Energy Consumption in kW** 

- For a given cooling load, compressor has to consume less energy, then C O P increases
- In other terms, COP of chiller increases,

if the temperature difference between

"Condenser water supply temperature "

and "Chilled water supply temperature"

#### decreases

# Effect of chilled water supply temperature on chiller COP



#### Constant condenser water temperatures - 28 / 34



# Effect of condenser water supply temperature on chiller COP



Constant chilled water temperatures – 6 / 12



• Improvement in COP is in the range of 40 – 50 %

# Gliding chilled water supply temperature





# Using multiple chillers to meet the total system load





#### **Situation 1** One chiller running at full load

1000 TR

600

28

60

50

738

## Situation 2 Two chiller running at 50% part load





## **Performance Comparison**





## Installing VFDs for Centrifugal Chillers



VFD operation of compressor increases COP at part load



VFD operation decreases energy consumption with same output , hence the higher COP

at part loads

## **Cooling Tower**

- Cooling tower supplies water to condenser, Hence performs the heat rejection part of the chiller
- Condenser water supply temperature effects the COP of the chiller
- Lesser the condenser water supply temperature, higher the COP of chiller
- Condenser supply temperature depends on effectiveness of the cooling tower





Source: Johnson chiller data

## **Cooling tower - Performance**



Effectiveness =

Range / (Range + Approach)

- Condenser supply temperature is limited by wet bulb temperature of ambient air
- Approach should be as less as possible
- Approach depends on the effective

heat transfer between air and water. It

depends on Heat transfer medium (fills).



## **Sum up - Energy Efficiency practices**







## Energy Efficiency practices -Building side

## **Building side systems**



- Energy Transfer stations
  - Plate HX
  - Tertiary chilled water loop

- Air distribution system
  - AHU
  - Fans

## Heat flow diagram





Installing VFD drives for fans and pumps



#### **CONTROLS** vs VFD 110 Outlet 100 damper 90 % Energy consumed hlet 80 ane 70 50 % savings 60 60 % 50 60 % VFD 40 30 20 10 0 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

% Flow rate

- Varying flows by VFD is more efficient mode of control
- Reduction in energy savings in the range of 50 to 60 % at part loads compared to damper control

### Heat Recovery at AHU units



- Heat recovery with Enthalpy wheels

   Effectiveness (Sensible & Latent) ≥ 75%
- Purge section to control air quality and cross contamination



# Potential for Free Cooling in Gandhinagar





## Free Cooling at AHU units



- Control logic for opening/closing of dampers & fan operation
  - Zone set point, Ambient air temperature & enthalpy, Return air enthalpy

 Provision to bypass cooling coil to minimize fan energy





## Incorporating Advanced Technologies in District cooling



## **RADIANT COOLING SYSTEM**

Indo-Swiss Building Energy Efficiency Project

# Radiant Cooling Systems – Integration with district cooling





Indo-Swiss Building Energy Efficiency Project

### Chiller C O P - Improvement



#### Constant condenser water temperatures - 28 / 34



Improvement in COP is in the range of 40 – 50 %

### **Additional Benefits**



- Savings on fan energy consumption
  - Only fresh air supply (No recirculation)
  - Estimated overall energy savings in the range of 30 45 % compared to air systems
- Better IEQ (Indoor Environment Quality)
  - Less noise due to less draft
  - Even temperature distribution

Indo-Swiss Building Energy Efficiency Project

#### <u>CASE STUDY</u> Infosys - SDB 1 Building , Hyderabad





- Symmetric building with 2 halves
- Building built up area = 23 200 m<sup>2</sup>
- Long facades facing north and south
- Total occupancy = 2 500
- Envelope heat load =  $10.8 \text{ W} / \text{m}^2$ 
  - $= 1 W / ft^{2}$
- Lighting load = 0.45 W /  $ft^2$
- Equipment load =  $3.5 \text{ W} / \text{ft}^2$
- Built in 2011





Radiant half

Indo-Swiss Building Energy Efficiency Project

Source : Infosys\_TechnicalPapaer\_Guruprakash\_sastry

## <u>CASE STUDY</u> Infosys - SDB 1 Building , Hyderabad



#### **Building Energy Index for 2011 – 12**



Radiant cooling system consumed 56 % less energy for HVAC than VAV cooling system for 2011 – 12 FY

## <u>CASE STUDY</u> Infosys - SDB 1 Building , Hyderabad



#### Cost analysis for both the systems:

| No | Utility                                            | Conventional | Radiant     |
|----|----------------------------------------------------|--------------|-------------|
|    |                                                    | INR          |             |
| 1  | Chiller                                            | 31 45 200    | 31 45 200   |
| 2  | Cooling tower                                      | 13 06 400    | 13 06 400   |
| 3  | HVAC low side works                                | 2 28 39 000  | 1 53 10 000 |
| 4  | AHUs, DOAS, HRW                                    | 51 18 200    | 28 78 900   |
| 5  | Radiant piping, accessories,<br>installation, etc. | 0            | 90 75 800   |
| 6  | Building Automation System                         | 61 84 000    | 65 84 000   |
| 7  | Total cost (INR)                                   | 3 85 92 600  | 3 83 00 300 |
| 8  | Area (m <sup>2</sup> )                             | 11 600       | 11 600      |
| 9  | Cost / m <sup>2</sup> area                         | 3 327        | 3 302       |

Almost same capital cost incurred for both the systems

Source : Infosys\_TechnicalPapaer\_Guruprakash sastry



## THERMAL ENERGY STORAGE – T E S

## **Chiller Operation - According to building loads**





 Chiller is being operated at lesser efficient load during both Peak load and Off - peak load periods

## **Chiller with T E S - Operation**





- Chiller is operated at best efficient point
- During off peak periods, chilled water is stored
- During Peak period, stored chilled water is used to meet the peak load

## Summary – An overall view





- Selecting high efficient chiller at part loads
- Increasing the CHW supply temperature to gain the COP advantage
- Installing VFDs for Compressors, fans and pumps
- Thermal Energy Storage integration
- Radiant cooling system integration
- Heat recovery
- Free cooling concept



#### **THANK YOU**